Velocity Control with Gravity Compensation for Magnetic Helical Microswimmers
نویسندگان
چکیده
منابع مشابه
Velocity Control with Gravity Compensation for Magnetic Helical Microswimmers
Magnetic helical microswimmers, which swim using a method inspired by the propulsion of bacterial flagella, are promising for use as untethered micromanipulators and as medical microrobots. Man-made devices are typically heavier than their fluid environment and consequently sink due to their own weight. To date, methods to compensate for gravitational effects have been ad hoc. In this paper, we...
متن کاملMRI driven magnetic microswimmers.
Capsule endoscopy is a promising technique for diagnosing diseases in the digestive system. Here we design and characterize a miniature swimming mechanism that uses the magnetic fields of the MRI for both propulsion and wireless powering of the capsule. Our method uses both the static and the radio frequency (RF) magnetic fields inherently available in MRI to generate a propulsive force. Our st...
متن کاملBioinspired helical microswimmers based on vascular plants.
Plant-based bioinspired magnetically propelled helical microswimmers are described. The helical microstructures are derived from spiral water-conducting vessels of different plants, harnessing the intrinsic biological structures of nature. Geometric variables of the spiral vessels, such as the helix diameter and pitch, can be controlled by mechanical stretching for the precise fabrication and c...
متن کاملAnalysis of Shape Optimization for Magnetic Microswimmers
We analyze an infinite dimensional, geometrically constrained shape optimization problem for magnetically driven microswimmers (locomotors) in three-dimensional (3-D) Stokes flow and give a well-posed descent scheme for computing optimal shapes. The problem is inspired by recent experimental work in this area. We show the existence of a minimizer of the optimization problem using analytical too...
متن کاملMagnetic steering control of multi-cellular bio-hybrid microswimmers.
Bio-hybrid devices, which integrate biological cells with synthetic components, have opened a new path in miniaturized systems with the potential to provide actuation and control for systems down to a few microns in size. Here, we address the challenge of remotely controlling bio-hybrid microswimmers propelled by multiple bacterial cells. These devices have been proposed as a viable method for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Robotics
سال: 2011
ISSN: 0169-1864,1568-5535
DOI: 10.1163/016918611x568620